LUT University

LAND OF THE CURIOUS

Elements of SMR licensing roadmap for Finland

Prof. Juhani Hyvärinen Lappeenranta-Lahti University of Technology EcoSMR webinar, March 23, 2022 LUT UNIVERSITY STRATEGY 2030 • TRAILBLAZERS – Science with a Purpose

SYSTEM EARTH

AIR Turning emissions into opportunities

BUSINESS

Sustainable renewal of business and industry

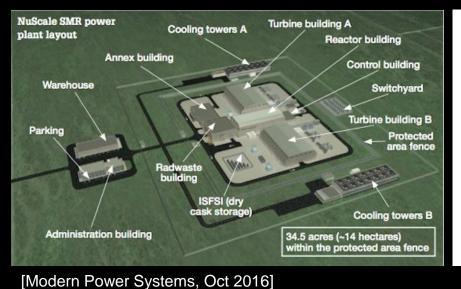
Refining sidestreams into value

WATER

ENERGY Transition to carbon-neutral world

Outline

- 1. Small Modular Reactors an overview
 - Sizes, uses, technologies
- 2. New actors in nuclear business
- 3. Licensing approaches and factors
- 4. Conclusions

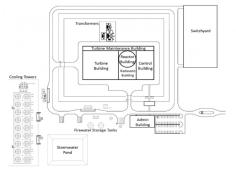

"SMR" is a very broad notion

Usually, "SMR" < 1000 MWth, ~300 MWe Near-term deployable technology: **Light Water** Other technologies demoed (gas-cooled) or promoted (liquid metal cooled, molten salts)

Use →	Electricity	Co- generation	Naval	District heat / Desalination
Thermal power (MW)	100010	1000100	200 100	10010
Units / installation	112	112	12	24
Nature of application	Traditional	Heat new	Movement	New

Two well known options

NuScale



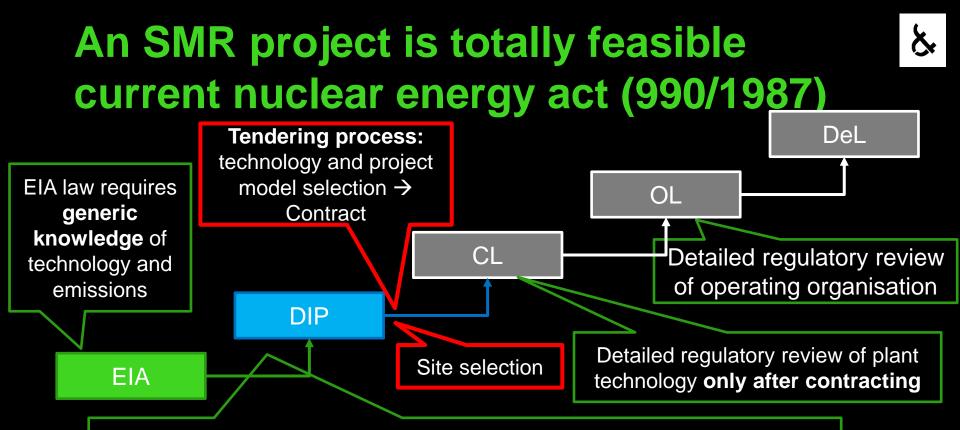
BWRX-300

Key siting, supply chain and regulatory considerations

The reference site for the BWRX-300 is entirely confined in a 260 m by 332 m footprint.

Deployment of the BWRX-300 will both leverage and significantly contribute to the manufacturing supply chain in the country by purchasing equipment and materials from competitive local suppliers.

© 2021, GE Hitachi Nuclear Energy


[GEH presentation for EcoSMR, Nov 2021]

23.3.2022

Commercial options

Largish LWR-SMRs: NuScale and BWRX-300

- From the outside, these look much like large plants
- US designs, follow current US rules, i.e. large reactor General Design Criteria (10CFR50 App. A) and regulatory practices
- Safety feature failure criterion N+1, no online preventive maintenance foreseen. There is not much to maintain online...
- Two licensing paths are feasible in the US: 10CFR50 CL,OL and 10CFR52 ESP/DC,COL

NEA requires that site(s), basic technology and maximum power ratings be specified. Plant models or number of reactors are **not required** by law.

Nuclear legislation evolution has begun

MEAE working group on Nuclear Energy Act report released in Aug 27, 2020 **foresees many new uses**

[Ydinlaitosten elinkaaren sääntelyn kehittäminen, Työ- ja elinkeinoministeriön julkaisuja 2020:43, <u>http://urn.fi/URN:ISBN:978-</u> 952-327-537-9]

MEAE has announced in Dec 2021 that revision of legislation has begun

Ydinreaktorien	Nykyisiä toimintoja ja toimintamalleja	Uusia toimintoja ja toimintamalleja			Nykyisiä toimintoja ja toimintamalleja
Tehotaso	lsot voimalaitokset > 1 000 MWth	Pienet modulaari- set reaktorit (SMR) < 1 000 MWth	Pienet lämmitysreaktorit < 300 MWth	Laivareaktorit 100–200 MWth	Tutkimusreaktori < 20 MWth
Ensisijainen käyttötarkoitus	Sähköntuotanto	Sähköntuotanto tai yhdistetty säh- kön ja lämmön tuotanto	Lämmöntuotanto: kaukolämpö, talvimerenkulku	Merenkulku	Tutkimustoiminta, isotooppituotanto
Sijoittelu Suomeen	Vanha tai uusi voi- malaitospaikka, harvaan asuttu seutu	~10 uutta laitos- paikkaa: isot kau- pungit, tehdas- paikkakunnat	10–50 uutta laitospaikkaa: pienemmät kau- pungit, isot vesiliikenneväylät	Satamat (usein mutta lyhytai- kaisesti), Telakat (harvoin mutta pitempään)	Ydinenergia-alan tutkimuskeskittymä
Omistaja	Suomalaiset Mankala-yhtiöt, valtionyhtiö	Alueelliset tai kun- nalliset energiayh- tiöt; (valtionyhtiö?)	Alueelliset tai kunnalliset energiayhtiöt	Varustamo	Yliopisto
Toteutustapa	Omistaja ostaa täy- sin ulkomaista teknologiaa Alihankintaa Suomesta	Omistaja ostaa täysin ulkomaista teknologiaa Alihankintaa Suomesta	Omistaja ostaa kotimaista tek- nologiaa (24–120 MWth) Toteutus pääosin kotimaisin voimin	Telakka hankkii koeteltua teknolo- giaa ulkomailta	Omistaja kehit- tää kotimaista teknologiaa
Käyttäjä	Omistaja	Omistaja tai pal- veluna ostettu käyttö	Omistaja tai palve- luna ostettu käyttö	Varustamo, voi ostaa palvelua tek- nologiatoimitta- jalta	Omistaja
Jätehuolto	Voimalaitokset itse tai yhteistyössä	Ensisijaisesti ydi- nenergian käyt- täjien yhteistyö kotimaassa.	Ensisijaisesti kaik- kien ydinenergian käyttäjien yhteis- tvö kotimaassa.	Ensisijaisesti kaik- kien ydinenergian käyttäjien yhteis- tvö kotimaassa.	Ensisijaisesti kaik- kien ydinenergian käyttäjien yhteistyö kotimaassa

https://julkaisut.valtioneuvosto.fi/handle/10024/162396

New licensing process elements would benefit SMRs (too)

Plant vendor interfaces with STUK

Regulatory review and approval of design

Includes enveloping site conditions as design

Technology and site approvals independent of individual projects

EIA

- Max thermal power
- Emissions limits (thermal, chemical, activity)
- All sites
- Acknowledges basic technologies

[From MEAE New technologies WG, 2016]

- Political decision
- Overall good of the society

Technology approval

- Candidate municipalities' approval
- Power limits

input

DIP

- Basic technology + STUK position on generic acceptability
- No technical review

Site review (regulatory approval)

- Technical study to establish applicable site
- conditions, incl. emergency zoning
- Site owner interfaces with STUK

Construction License

- Approval of plant design
 - Techridlogy
 - Site
- Compatibility of design and site

Regulatory **controls during construction** need to be streamlined as well

23.3.2022

10

New players in nuclear business?

Established **nuclear company**, turnover > 1 B€/a

Imports commercial SMR

Produces **electricity** on an established nuclear site

New players in nuclear business?

Established nuclear company , turnover > 1 B€/a	
	Established large company , turnover > 1 B€/a
Imports commercial SMR	Imports commercial SMR
Produces electricity on an established nuclear site	
	Produces electricity and/or heat on a new nuclear site, close to population

New players in nuclear business?

Established nuclear company , turnover > 1 B€/a		
	Established large company , turnover > 1 B€/a	Established mid-size company , turnover ~0.1 B€/a
Imports commercial SMR	Imports commercial SMR	
		Builds domestic small reactors
Produces electricity on an established nuclear site		
	Produces electricity and/or heat on a new nuclear site, close to population	Produces heat on an own new nuclear site, close to population, or
		Becomes partial owner of a joint cogeneration facility, with a large industrial partner

New working models for development, build, operation, decommissioning

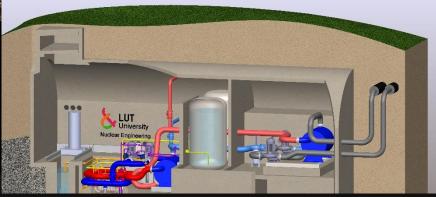
Current regulations presume a "license holder" who alone is responsible of safety

Underlying assumptions include that

- Plants are owned by large (national) energy companies that have broad inhouse competence
- Industrial base is able to provide dedicated contracted services (e.g. specialty manufacture) at reasonable cost

New build experience seems to have invalidated both of these beliefs. New model is needed to assign responsibility to the capable parties.

	Old license holders	New "license" holders
Technology	Plant ownerOutsources to Vendor	Vendor/IPR holder, via Design Certification
Site	Plant owner	Site owner – can be Owner of Plant owner, or transfer site to Plant owner (later)
Operations	Plant owner	Plant ownerMay outsource to a Service provider
Liability	Plant owner	Plant owner
Waste management	 Plant owner (financial) may outsource to daughter company 	 Plant owner (financial) May outsource to a Service provider


Security design for very small SMRs

Commercial SMR plant security provisions are similar to large reactors: double fence, on-site security organisation, distance to other facilities

Very small SMRs, especially district heating reactors, could get by with simpler provisions:

- Underground siting
 - No external features of safety significance
 - No vulnerable connections (pipes, cables, ducting all underground)
- Controlled access
 - Plant fence at a radius of ~50 metres, mainly to indicate where digging or drilling is forbidden, to protect underground ducting
- Information security
 - Remote operation, if used, using dedicated secure data links

Nuclear responsibilities

- Licensee's technology competence level is subject to current debate
- International obligations, NOT negotiatable
 - Nuclear material safeguards nonproliferation is important, and must be taken care of
 - Nuclear liability insurance. According to the Paris convention, liability can be adjusted from 700 M€ down to 70 M€, based on plant characteristics and accident consequences [SopS 112–114/2021 §7 a) i)]

(Paris Convention on Third Party Liability in the Field of Nuclear Energy, 1960, as amended by Additional Protocol in 1964, Protocol in 1982 and Protocol in 2004,

Conventional permitting also applies

State-level decision making is not enough!

- Land use planning local political approval necessary
- Construction permit by local authorities
- Grid compatibility Fingrid for national transmission of electricity
- Environmental permits by environmental authorities

Current SMR licensing roadmapping

MEAE VN-TEAS PIEMOS: Siting, Nuclear materials, Modular technologies (LUT)

STUK Strategy renewal, STUK Requirement and YVL Guide renewal (in-house)

Finnish Energy Technology Association (ET ry) Proposal for SMR licensing model and regulations (Platom) Position paper on SMR licensing (ET) Review of land use planning and licensing (Afry)

Business Finland EcoSMR, WP1: Licensing, siting, safety analyses (VTT, LUT)

23.3.2022

Conclusions

- Commercial (large) SMR technology becoming available
- Applications: electricity, heat or both; civil marine?
- New players may emerge on the field
- Nuclear licensing processes already being improved
 - Individual nuclear projects could go ahead right away
 - Many adaptations to various legislations would be needed for full benefits of small modular nuclear
 - Many projects to provide input to legislation and regulation revision
- Conventional licensing also applies
- Much potential to do good: broaden business, help climate, revitalize nuclear industry practices, *focus on the essentials*

Thank you!

juhani.hyvarinen@lut.fi

LUT University